Tutorial problems for "Solar Energy" lecture (23745), WS 2021/2022 Ulrich Paetzold & Bryce Richards Tutorial Questions #2: Drift and diffusion current densities; Doping; Charge recombination; Steady-state illumination

1. Diffusion current density

The diffusion coefficient of electrons in silicon is $D_n = 36 \text{ cm}^2 \text{s}^{-1}$. In a silicon layer, the electron density drops linearly from $n = 2.7 \times 10^{16} \text{ cm}^{-3}$ down to $n = 10^{15} \text{ cm}^{-3}$ over a distance of 2 μ m. What is the electron diffusion current density J_{n,diff} induced by such a density gradient?

2. Electron drift flux

From the data of exercise 1, what electric field over the gradient zone of 2 μ m would be required to compensate the electron diffusion flux with an electron drift flux? The electron mobility in silicon is $\mu_n = 1350 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$ and the direction of drift to compensate diffusion flux is directed from lower density to higher density.

3. Doped silicon

Consider a slab of silicon crystal 10cm by 10cm by 10cm at room temperature, in the dark. Exactly 1.5×10^{19} phosphorus atoms were added to the crystal when it was still molten, during its growth. The effective conduction band density of states of c-Si can be described as: $N_c \approx 6.2 \times 10^{15} \times T^{3/2}$ cm⁻³. The effective valance band density of states of c-Si can be described as: $N_V \approx 3.5 \times 10^{15} \times T^{3/2}$ cm⁻³. Assume room temperature conditions and that the density of atoms in c-Si is approximately 5×10^{22} cm⁻³.

- a) Calculate the density of phosphorus atoms in the c-Si slab (cm $^{-3}$). Calculate the number of phosphorus atoms per million silicon atoms. i.e. ppm.
- b) Calculate the concentration of electrons (n), holes (p) and the intrinsic concentration of charge carriers (n_i). Assume the bandgap is equal to 1.1eV and that all the P atoms are ionized.
- c) Calculate the position of the Fermi level (E_F) in respect to the conduction band edge (E_C).
- d) What 'type' is our c-Si and what are the majority carriers?
- e) Answer question (b) to (d) for the silicon slab after it has been heated to a high temperature (727°C).
- f) Why is silicon a different 'type' at room temperature compared to the higher temperature? Where do the extra holes/electrons come from at high temperature compared to the room temperature?
- **g)** Draw an energy band diagram and include the position of the Fermi level as a dashed line for both cases. Comment on the position level at room temperature compared to at the high temperature.
- **h)** A drift current density of $J_{drift} = 110A/cm^2$ is required in p-type c-Si (hole mobility $\mu_p \approx 470cm^2V^{-1}s^{-1}$) with an applied electric field of 25V/cm. What doping concentration is required to achieve this current?

4. Charge recombination process

Which of the charge carrier recombination mechanisms below, occurs due to the electron-hole recombination via a defect state in the bandgap?

- a) Radiative recombination
- **b)** Auger recombination
- c) Shockley-Read-Hall (SRH) recombination
- d) All of the above

5. Diffusion length

The diffusion length is the average length that a carrier moves between generation and recombination. Calculate the minority diffusion length of a minority carrier having a lifetime of τ = 10 µs and minority carrier diffusivity of D = 25.6 cm²/s.

6. Carrier lifetime

The minority carrier lifetime of a material is the average time which a carrier can spend in an excited state after electron-hole generation before it recombines. Calculate the minority carrier lifetime for a single crystalline solar cell having diffusion length of L = 200 μ m and minority carrier diffusivity of D = 27 cm²/s.

7. Steady-state illumination of silicon with no current

Consider a 100 μ m thick p-doped crystalline silicon wafer illuminated with a monochromatic light at a wavelength of 650 nm as illustrated in Figure 1. The optical complex refractive index ($\tilde{n} = n - ik$) of the c-Si at 650 nm is $\tilde{n} = 3.84 - 0.015i$. The incident irradiance is 1,000 W/m². The

absorption coefficient α is given by $\alpha = 4\pi k/\lambda$. The diffusion length of minority carriers is $L_n = 60 \ \mu m$ and the diffusion coefficient of the minority carriers is 29 cm²s⁻¹. Calculate:

(a) The absorption coefficient at 650 nm.

(b) The reflectance at interface air/Si (assume $\tilde{n}_{air} = 1$).

(c) The photon flux after reflection at x = 0 and $x = 50 \mu m$.

(d) The generation rate G_L at x = 50 μ m.

(e) The excess of minority carriers, Δn at x = 50 μ m in the p-doped wafer.

Assume the following steady-state conditions: sample is uniformly illuminated along y direction as shown in Figure 1; dominant thermal recombination and generation process and condition of low injection level and finally there is no current flowing through the wafer, which means:

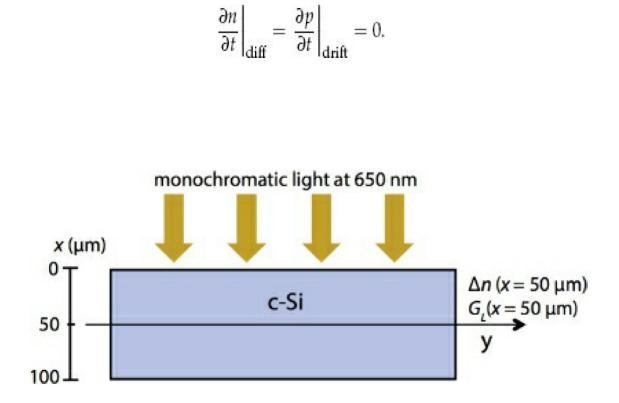


Figure 1: c-Si wafer illuminated with a monochromatic light.